Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing-Hua Li* and Chui-Pan Lin

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China

Correspondence e-mail: lijh@zjut.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.166$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-1-Ethoxycarbonyl-2-[(2-hydroxy-1-naphthyl)-(phenyl)methyliminio]propan-1-ide

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3}$, the amino, hydroxy and carbonyl groups are involved in hydrogen bonding, forming a dimer. The crystal packing is further stabilized by intermolecular $\pi-\pi$ stacking.

Comment

As early as the mid-20th century, Mario Betti reported the synthesis of the so-called Betti base by the reaction of benzaldehyde with 2-naphthol and ammonia followed by hydrolysis with hydrochloric acid (Betti, 1941). However, only in recent decades has its usefulness in asymmetric synthesis been recognized (Istvan et al., 2004). As cheap resolving agents, chiral catalysts and optically active ligands, the Betti base and its derivatives are now widely used in organic synthesis (Istvan et al., 2004). Chiral aminoalcohols are of importance in catalytic asymmetric synthesis (Pu et al., 2001). Compound (I), prepared readily from the Betti base by treatment with ethyl acetoacetate, is one of the auxiliary-induced prochiral imino compounds which yields the corresponding chiral aminoalcohol after asymmetric hydrogenation.

(I)

In the structure of (I), atoms $\mathrm{N} 2, \mathrm{C} 18, \mathrm{C} 19$ and C 20 are coplanar; this is illustrated clearly by the torsion angle $\mathrm{N} 2-$ $\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$ of $-2.20(2)^{\circ}$ (Fig. 1). Moreover, the mean plane through these four atoms is perpendicular to the phenyl ring plane, forming a dihedral angle of $89.89(9)^{\circ}$. The dihedral angle between the naphthalene ring system and phenyl ring plane is 78.71 (6) ${ }^{\circ}$.

In the crystal structure, the amino, hydroxy and carbonyl groups are involved in hydrogen bonding. Amino atom N2 acts as hydrogen-bond donor, via atom H201, to atom O31 and O32, forming intramolecular hydrogen bonds. A centrosymmetric hydrogen-bond dimer centred at $\left(0, \frac{1}{2}, \frac{1}{2}\right)$ is formed by the intermolecular hydrogen bond $\mathrm{O} 31-\mathrm{H} 301 \cdots \mathrm{O} 32^{\mathrm{i}}$ [symmetry code: (i) $-x, 1-y, 1-z$] (Table 2 and Fig. 2). The crystal packing is further stabilized by intermolecular $\pi-\pi$ stacking. The naphthalene ring system and its symmetryrelated partner at $(1-x, 1-y, 1-z)$ are parallel to one

Received 16 January 2006
Accepted 31 January 2006

The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 40% probability level. H atoms are drawn as spheres of arbitrary radius.
another, the distance between the centroids of the rings being 3.898 A․

Experimental

To Betti base \{or 1-[amino(phenyl)methyl]naphthalen-2-ol\} (1.0 g, $2.8 \mathrm{mmol})$, methanol (20 ml) and ethyl acetoacetate (1.5 ml) were added with stirring at room temperature. Stirring was continued for 3 h at the same temperature to complete the reaction. The resulting mixture was concentrated in vacuo to about 3 ml , and the precipitated crystals were collected by filtration and washed with methanol twice ($2 \times 0.8 \mathrm{ml}$) to give colourless crystals (1.41 g , yield 97%; m.p. $431-432 \mathrm{~K}$), which were recrystallized from methanol.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3}$
$M_{r}=361.44$
Triclinic, $P \overline{1}$
$a=9.602(4) \AA$
$b=9.962(5) \AA$
$c=10.899(5) \AA$
$\alpha=100.775(19)^{\circ}$
$\beta=109.714(14)^{\circ}$
$\gamma=93.722(18)^{\circ}$
$V=954.9(7) \AA^{\circ}$

$Z=2$

$D_{x}=1.257 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7862 reflections
$\theta=3.1-27.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=298$ (1) K
Chunk, colorless
$0.30 \times 0.24 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID	3124 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
\quad diffractometer	$R_{\text {int }}=0.023$
ω scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: none	$h=-12 \rightarrow 11$
9527 measured reflections	$k=-12 \rightarrow 12$
4346 independent reflections	$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.166$
$S=1.00$
4346 reflections
245 parameters
H-atom parameters constrained

Figure 2
Partial packing digram for (I), showing the hydrogen-bonded (dashed line) dimer. [Symmetry code: (i) $-x, 1-y, 1-z$.]

Table 1
Selected bond lengths (\AA).

O31-C11	$1.3624(17)$	O33-C21	$1.429(2)$
O32-C20	$1.235(2)$	N2-C1	$1.4675(16)$
O33-C20	$1.350(2)$	N2-C18	$1.333(2)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O31-H301 \cdots O $32{ }^{\text {i }}$	0.93	1.80	2.7182 (15)	170
$\mathrm{N} 2-\mathrm{H} 201 \cdots \mathrm{O} 31$	0.89	2.25	2.8182 (17)	122
$\mathrm{N} 2-\mathrm{H} 201 \cdots \mathrm{O} 32$	0.89	2.11	2.7634 (13)	129

Symmetry code: (i) $-x,-y+1,-z+1$.

The H atoms of the amino group and hydroxy groups were located in difference Fourier maps and included in the refinement based on the as-found $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bond lengths, but their isotropic displacement paramenters were initially refined, then fixed in the final stage. All other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and included in the refinement in the riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Betti, M. (1941). Org. Synth. Collect. 1, 381-383.

organic papers

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Istvan, S. \& Ferenc, F. (2004). Curr. Org. Synth. 1, 155-165.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Pu, L. \& Yu, H. B. (2001). Chem. Rev. 101, 757-824.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA
Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

